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The interconnection network is one of the most important multicomputer components,
since it has a great impact on global system performance. Many models and simulators
have been proposed to evaluate network performance. This paper presents SimuRed, an
event-driven flit-level, cycle-accurate simulator to evaluate different orthogonal network
configurations. The core of the simulator has been designed to be expandable and portable
to different situations. Some of the advantages of this simulator over other similar tools are
its visual interface, its fast execution and its simplicity. Moreover, it is multiplatform and
its source code versions (C++ and Java) are freely available under GNU open-source license.
The performance of this simulator has been evaluated, including a performance impact
study of injection channels and deterministic/adaptive routing for meshes and hypercubes.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Multicomputer network evaluation

Current high-performance systems contain from tens to thousands of processors. The interconnection network in these
systems, even if they only have tens of processing nodes, is of vital importance to the global performance of the system. For
this reason, many researchers have addressed this issue, which is currently one of the most active research topics in com-
puter architecture [1]. Network simulation is one of the key stages when designing new parallel systems, since the network
is one of the elements with higher impact in global machine performance.

Simulation is necessary to design new multicomputer interconnection networks and to evaluate their performance before
spending money on their construction. There are two widely-used approaches to network simulation: the first one describes
the hardware behaviour at component level to obtain accurate (flit-level), though time-consuming, simulations; the second
approach creates abstract analytical (statistical) models of network behaviour, obtaining less accurate simulations, though
with faster execution times. Some researchers have defended the statistical model as the main tool for multicomputer net-
work evaluation [2], while most researchers have employed some kind of flit-level simulator to validate their statistical mod-
els [3–6]. Both approaches are important to performance evaluation and we will discuss their pros and cons in this paper.

Statistical network modelling has several advantages over other approaches. Probably the most important is the low exe-
cution time, even for large networks; a flit-level simulator may take hours to complete a single simulation, while the ana-
lytical model gives similar results in a few minutes. But there are other advantages: the modelling process requires a perfect
. All rights reserved.
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knowledge of the network being modelled and the behaviour of its internal processes; thus on making a model of a network,
a great deal of information about the way it works is produced.

As network analytical models have such advantages, then why should we still use flit-level simulators? There are at least
two reasons: accuracy and robustness. Analytical models are usually complex and this complexity increases with the preci-
sion required. Most models are based on differential equations that may require sound programming algorithms that cannot
converge in some situations. On the other hand, model debugging also becomes difficult since there are many sources of er-
ror and results are difficult to validate. In fact, most researchers have employed a flit-level simulator to validate their ana-
lytical models.

Analytical models and flit-level simulations can coexist perfectly; one can be more suitable than the other depending on
the situation. Analytical models seem to be superior for general network characterization and evaluation, fast simulation,
network understanding, statistical traffic analysis, stationary network behaviour, etc. Meanwhile, flit-level simulators are
better suited to accurate network simulation, network debugging (routing and switching design), analytical model valida-
tion, real traffic simulation, visual network inspection, stationary and transient network behaviour, etc.

One of the main advantages of flit-level simulators is their capability for network debugging, since they enable packet
movement to be checked cycle by cycle. Most flit-level simulators do not have a visual interface to check packet movement,
thus debugging is still possible even though it is more complex.

Another interesting feature of flit-level simulators is their ability to monitor packet traffic at every instant to see transient
network behaviour. This feature is not possible, or becomes very complex, when modelled analytically.

The last remarkable feature of flit-level simulators, which is very difficult for an analytical model, is the simulation of real
traffic where the arrival of one packet may produce the generation of more packets.

We present SimuRed in this article, a flit-level simulator with special emphasis on those features that are difficult for an
analytical model to achieve, these being: network debugging, transient traffic analysis and real traffic simulation. Measure-
ments of the execution time of SimuRed have shown that this tool is usually slower than an analytical model, but it is fast
enough to obtain good results in just minutes.
1.2. Flit-level computer network simulators

While many analytical models are described in literature for computer network evaluation, few flit-level simulators have
been reported. There are some references to flit-level simulators used to evaluate analytical models [3–6], but detailed
descriptions are not given. Other authors have published network performance evaluations using their own flit-level simu-
lator [7–10], but again there are few details or specific literature about their simulators.

Most flit-level simulators reported in the past are not available anymore. One of the few flit-level simulators reported and
still in use is SWORDFISH [11]. This simulator shares many characteristics with SimuRed and is still under development [12].
Another active flit-level simulator is the Book sim presented at [13]; this simulator does not offer a graphical interface unlike
SWORDFISH and SimuRed. One of the best reported flit-level simulators is pp-mess-sim [7]. This simulator was designed to
evaluate the performance and design of multicomputer networks; some of the evaluation results have been employed in the
design of a real-time router architecture [8]. Apart from [7] there is no more literature about this simulator and the source
code or the program itself is not on the web. The same is true in case of another good flit-level simulator called SMART [14].
Again, the source code and the program itself are difficult to find and use. There are other multicomputer architecture sim-
ulators like PEPE [15]. In these cases, there is little flexibility on the details and configuration of the network, since the goal is
to study other higher-level architectural parameters.

One of the areas where flit-level simulators are applied is to evaluate network analytical models. A simple simulator for
multicomputer routing networks, Pertel [16], has been used to evaluate a model for interconnecting subsystems for mas-
sively parallel computers [2]. Other researchers [3–6] have validated their analytical models using a flit-level simulator
for different routing and switching techniques. In none of these cases have the authors given details (developer, language,
platform, etc.) about the flit-level simulator implementation they have used. This lack of description of the validation tools,
has lead some authors to complain about how difficult it is to reproduce and confirm some simulated research results [17].
Our goal in creating SimuRed was to develop a publicly available tool so that everybody can use and test it. The source code is
freely available under GNU general public license and it can be downloaded from its web site at http://simured.uv.es. This
will allow each researcher to evaluate, reproduce and eventually validate research results achieved using this tool.

Flit-level simulation is in between packet-level and gate-level simulations. Gate-level simulation is the lowest and the
most accurate level and it is interesting when designing and refining multicomputer network routers. Before exploring this
level, it is better to use analytical models or flit-level simulators to get an idea of network performance parameters. One gate-
level simulator worth citing is Orion [18], which is able to evaluate network performance, though it is specially dedicated to
studying network power consumption.

Regarding higher-level simulation (packet level, message level and above [19]), there are some tools where real programs
are evaluated on simulated multicomputer systems. One of these tools is the BigSim simulator [20], which is a parallel appli-
cation for simulating large systems like the Blue Gene. It has an internal flit-level module called BigNetSim [21], which can be
changed to adapt to specific network characteristics. One of the main advantages of this tool is that it is parallelized so it can
run faster in a parallel computer [22], though its performance decreases in a non-parallel system.

http://simured.uv.es
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2. SimuRed network modelling

Network topology, switching mechanism and routing algorithm are the three main issues characterizing any multicom-
puter network [9]. The network topology defines node inputs and outputs and their interconnections. The switching mech-
anism defines the way in which information is physically sent through the network. Finally, the routing algorithm decides
the path between the origin and destination nodes.

2.1. Network topology

Many topologies have been proposed for multicomputer network implementation. Nevertheless, during recent years,
strictly orthogonal direct network topologies have been those most commonly employed for massively parallel multicom-
puters, especially the k-ary n-cube type. Some authors argue that, from the scalability and performance point of view, direct
networks of the k-ary n-cube (torus) type are recommended [23]. The hypercube is a popular instance of k-ary n-cube found
in systems like the SGI Origin 2000 [24]. Torus is also a very common example of k-ary n-cube found in the J-machine [25],
Cray T3D [26], Cray T3E [27] and the most recent IBM Blue Gene/L [28].

SimuRed implements the popular k-ary n-cube (torus) topology. Hypercube is a particular case when k ¼ 2. The definition
of a mesh does not strictly fit in a k-ary n-cube topology, though any mesh with an equal number of nodes per dimension can
be simulated as a torus if the warp-around channels are forbidden inside the routing algorithm; in fact, this is the technique
used in SimuRed for simulating meshes of any dimension. Complex meshes with different node number per dimension can
be still simulated imposing further restrictions on the routing algorithm.

Fig. 1 shows a portion of a typical 2-D mesh or 2-D torus topology. This a particular case SimuRed can handle since it
supports any-dimensional mesh or torus. Each node of the network has a router and a processor. SimuRed is able to print
this structure showing the internal elements of the router and the state of the packets in the network (see Fig. 4).

The list of topological parameters that can be specified in the SimuRed simulator follows (these parameters are directly
available from the simulator Graphical User Interface):

Dimensions: It is the number of network dimensions (n). Tori usually have two or three dimensions, but this number may
reach higher values for small k, like in hypercubes (k ¼ 2) where a large number of nodes implies a large number of
dimensions.

Nodes per dimension: It is the number of nodes for each dimension (k). The total number of nodes in the network is thus
n� k.

Buffer length: The buffer length is defined in flits. It can be any number starting from 1 (null buffer is not allowed). There is
an input buffer and an output buffer for each channel and this length is specified for both buffers. Also this length applies for
the injection and ejection channel buffers.

Virtual channels: The number of virtual channels for each physical channel can also be specified. The presence of virtual
channels increases the network throughput and they are necessary for most of adaptive routing algorithms.

Injection channels: This is the number of channels from the processor to the network. Usually there is just one but when
there are a large number of virtual channels, it would be better to have more than one injection channel depending on the
network throughput.

Ejection channels: This is the number of channels from the network to the processor. It is usually one, but by implementing
many of these channels the contention at the arrival node can be reduced.

The only factors limiting these parameters are the total available memory of the computer and the amount of patience
needed to obtain the results (a simulation with millions of nodes could take days to complete). These topological compo-
nents may display different behaviour depending on the following options:
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Fig. 1. Particular network model for a 2-D mesh or torus topology.
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Bidirectional: This option specifies whether node interconnections are bidirectional or not. For bidirectional interconnec-
tion an input and output buffer is provided for each channel.

Buffer forwarding: It specifies whether flits may jump directly ahead of the FIFO buffer if it is empty. If not selected, flits
must cross all the buffer’s registers from the beginning to the end, even when they are empty.

Physical channels: When several virtual channels have been specified, this option indicates whether these virtual channels
share the same physical channel or, if on the contrary, each virtual channel is in fact a physical channel in itself.

The time unit in SimuRed is the clock cycle, which is the time step in the simulation. Delays for the network physical com-
ponents are specified in cycles. Thus, simulation accuracy is one cycle. These are the components that introduce some delay
in packet movement:

Buffer: The delay in buffer is the time that a packet flit needs to go from one flit buffer to the next. Usually this is the least
complex operation in any network, so this delay tends to be one.

Crossbar: This delay is the time a flit takes to pass through the crossbar switch. Depending on its complexity it may be
more than one compared to the buffer delay.

Switching: This is the time to take a routing decision and inform the crossbar to switch in specified direction. Depending
on the routing complexity and the crossbar implementation it may take several cycles.

Channel: This is the time required for one flit to go from the output buffer of one node to the input buffer of the next node
through the physical channel.

This delay model is extensively described in [9]. All these values can be changed at the simulator user interface. Most
analytical models and simulation results shown in bibliography use a unit time delay; for more accurate network analysis
it is necessary to obtain accurate delay values from gate-level simulation and feed them to SimuRed.

2.1.1. Router model
The router implemented in SimuRed is an adaptation of the one described in [9]. This router is general and matches those

used in other simulators and analytical models [10]. Fig. 2 shows the router scheme.
The router model of Fig. 2 has v virtual channels for each physical channel (physical option disabled). It involves n dimen-

sions and bidirectional channels, thus it has n input channels and n output channels. In that model there is only one ejection
and one injection channel, but this is a particular case since SimuRed supports any number of injection/ejection channels.

2.2. Switching mechanism

There are several switching mechanisms available for multicomputer networks. One of the most common techniques is
the wormhole switching for its simplicity at the router level. SimuRed is especially suitable for pipelined switching techniques
like the wormhole. Virtual Cut-Through can be implemented just making the input/output buffers large enough. Other pipe-
lined techniques like packet switching may require the change of the source code a little bit. The implementation of non-
pipelined techniques such as classic circuit switching requires a deep change in the program source code.

2.3. Routing algorithms

One of the most interesting properties of flit-level simulators is the ease with which new routing algorithms are imple-
mented and tested. If the simulator also includes a visual tool, the debugging of the routing algorithm implementation be-
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comes a simple task. SimuRed has a graphical interface which allows the user to see the network nodes and traffic of the two
lowest network dimensions. The simulator can also be run step by step, thus packet movement can be tracked at flit-level
cycle by cycle.

Implementation of new routing algorithms is simple in SimuRed from the already existing routing examples. The code is
completely object-oriented in its two versions (C++ and Java) so any new routing algorithm can be coded just by making a
copy and pasting it from the existing examples and then introducing the required changes.

This is a list of currently implemented routing algorithms:
Dimensional order for meshes: This is the simplest deterministic routing algorithm for meshes of any dimension and size. It

is also known as XY for two-dimensional meshes since it first routes the packet in X direction and then in Y direction. The
path is always the same for the same source/destination pair, thus it is really deterministic. In the case that there is more
than one virtual channel, the packet is routed through the first randomly selected free channel.

Dimensional order for torus: This algorithm is the same as the one described before but for k-ary n-cubes. This algorithm is
an example of non deadlock-free routing, since deadlock may happen due to the torus wrap-around channels.

Duato’s adaptive routing for meshes: This is a simple, fully-adaptive routing algorithm based on Duato’s protocol [29] and
dimension-order deterministic routing. It is necessary to have at least two virtual channels to achieve full adaptability;
otherwise, it is exactly like the dimension-order algorithm.

Fully-adaptive routing for meshes (non deadlock-free): This is an example of full adaptability without paying attention to
deadlock avoidance.

The non deadlock-free algorithms described before have been included in the simulator just for the sake of testing its abil-
ity to detect and show deadlock configurations in the network. SimuRed has not been designed to check exhaustively
whether an algorithm is deadlock-free or not, but if an algorithm is not deadlock-free, a deadlock configuration will probably
show up sooner or later.

When two or more packets in the crossbar demand the same output buffer, contention is produced in the crossbar. This
contention is solved using an arbitration mechanism. The default arbitration implemented in SimuRed is the simple and fair
fifo (the first packet to arrive is the first to go).

The routing algorithms presented so far use minimal paths. This is not a limitation of the simulator but of the specific
routing implementation. Non minimal path algorithms can easily be implemented in SimuRed.

3. Simulator architecture

SimuRed is divided into two blocks: the core and the user interface. The core of the simulator is a set of classes and meth-
ods that define a generic interconnection network and its behaviour. This core also includes the classes and methods for
packet description and behaviour. The user interface is the program layer above the core: it interfaces the user and the sim-
ulator core and provides a graphical interface to show simulation development and results, allowing data input and inter-
active/batch simulation specification.

In the C++ implementation, these two blocks are clearly separated in different files: full core specification is located in
files red.h and red.cpp, while the user interface source code has the name of the application (simured.cpp for the visual
version and simured_cmd.cpp for the command-line version). The core has been designed to be portable between platforms
and operating systems: it compiles under gcc (Windows or Linux) and under Borland C++ compiler. Two different user inter-
faces are provided: one is graphical and sophisticated, it has been written for Borland C++ Builder; the other user interface
works in command-line mode, but has the same functionality as the other (non visual, though) and the code is easier to
understand; it serves as an example for simulator core integration in any other tool.

The differentiation between the user interface and the simulator core is not as evident in the Java version since each class
has its own file. Basically, the whole core is mainly comprised of the Red and the Packet classes. The core of the Java version is
exactly the same as the C++ version, the differences between the Java and C++ versions are to be found in the user interface.
There is not yet a Java command-line version, but there is a reduced Java Applet version directly accessible from the SimuRed
web page.

There are several advantages of using object-oriented languages for hardware modelling, among these every hardware
component can easily be specified using a class, and its behaviour and interaction with other elements can be modelled
by its class methods.
(Network)
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Fig. 3. Simulator classes and class hierarchy.
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Fig. 3 shows the classes and class hierarchy of the SimuRed core components. At the highest level there is the Red class
(Network). This class implements the statistical counters and the node, channel and packet lists. It has several methods that
model network behaviour, but the most important is the RunCycle() method, which advances the simulation time by one
cycle performing all the necessary changes to the packet positions.

The network is created by interconnecting the set of channels and nodes. The Channel and Node classes define the behav-
iour and constants of the network channels and nodes. Each node has one processor, several input/output buffers and a
crossbar; these components are defined in the Processor, Buffer and Crossbar classes, respectively. The crossbar is further di-
vided into several switches coded in the class CrossSwitch and the buffers are divided in flits defined in the class FifoFlit. All
lowest level network components (CrossSwitches, FifoFlits, Processors and Channels) share properties with the common
class Device.

The Packet forms part of the network though its behaviour and creation is dynamic and takes place outside the network.
This class has its own RunCycle() method whose fuction is to move the corresponding packet instance one cycle. In fact, the
RunCycle() method of the Red class calls the RunCycle() methods of all packets present in the network. This is one of the spe-
cial characteristics of SimuRed: its physical components do not perform any action during simulation; it is the packet itself
which moves depending on the static behaviour of the components it is going through. This makes simulations run faster
than in other approaches, making it feasible to simulate large systems in a few minutes.

3.1. Graphical user interface

SimuRed offers interactive simulation: the program shows the network structure and the packet traffic at the flit-level
during run time. The simulation can be stopped at any time and continued step by step. The graphical user interface also
allows batch execution by specifying a set of multiple simulations. Up to two nested parameters can be specified in a multi-
ple simulation; the inner parameter is always the delivery rate of packets, while the optional outer parameter can be the
number of dimensions, nodes per dimension, buffer length or number of virtual channels. A multiple simulation generates
a chart that can be viewed immediately using SimuRed’s own chart presentation tool. These results are also stored in stan-
dard CSV text format for further processing using any other external tool.
Crossbar

Channels

Input Buffers

Output Buffers

Buffer
Ejection

Injection
Buffer

Fig. 4. Simulator snapshot showing network elements and numbered packet flits; each packet has a different colour. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Simulator chart window showing head latency for different productivities and virtual channels. (Different settings are shown using different colours
in the simulator.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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One of the most interesting features of SimuRed is its ability to show the network state and the packet motion at any time.
Fig. 4 shows a slice of the simulator network window with some of the network components and packet state. This figure
shows two nodes of the network already shown in Fig. 1. Each packet has a different, random colour and each packet flit
has a number starting at one for the head flit. Network visual explorations, state visualization and step by step execution
are necessary features to new routing algorithm debugging. These visual features are also interesting for educational
purposes.

Fig. 5 shows the simulator chart window for a specific run as an example of chart drawing and multiple batch processing.
In this case, the average packet latency of the order dimension algorithm for a 4 � 4 mesh is represented against packet traf-
fic (productivity expressed as flits per node per cycle) for each different number of virtual channels (1, 2, 4, 8 and 16). Each
curve corresponds to a different number of virtual channels and is represented using a different colour, since the output is
intended for a colour monitor.

4. Traffic generation

A single simulation involves a number of packets being injected into the network. At the arrival of each packet, the sta-
tistical counters are updated and at the end of the simulation the results are shown. The most common way to evaluate per-
formance is to plot the mean packet latency for several packet delivery rates up to network saturation. Packet source and
destination nodes are randomly selected from among all the nodes in the network. Random packet generation follows an
arrival Poisson process. Other packet traffic and patterns, including real application traffic, can be simulated specifying a
trace file.

Packet latency depends on the network workload at a specific moment; if the network is full of packets, new packets will
probably get blocked, increasing their own latency. Network occupancy may increase over time, until it reaches a stable state
in which packet latency only depends on network static parameters. This is usually the state required for most simulations;
therefore, before calculating any statistical value, the stationary condition must be satisfied. The common way to ensure net-
work stabilization is to inject a specific number of warm-up packets before making any other calculations. Another option is
to track packet latency until its average value hardly changes, but this can lead to errors since packet latency is not uniform
due to path length non-uniformity, especially for large networks.

SimuRed can keep track of statistical counters during simulation. This transient simulation allows the user to perform
dynamic simulations to see how the statistics change throughout the simulation time. The main use of this option is to cal-
culate the instant at which the network stabilises. Thus, before carrying out a simulation, it is recommended to perform a
dynamic simulation at a very high injection rate; this allows one to see two important parameters for further simulations:
the first parameter is the network saturation delivery rate and the other is the number of dummy warm-up packets. Other
interesting purposes of this dynamic simulation is to study non-uniform traffic arrival rates, like bursty traffic or those found
in real applications, especially in multimedia programs [30].

The SimuRed user interface allows the user to produce a single simulation run selecting the packet number, packet length,
header length, delivery rate, and the number of warm-up packets. The user can also specify a set of simulations from a min-
imum arrival rate to a maximum (usually close to the saturation point) and a number of points in between. Most charts in
this article have been generated this way in a single run.

4.1. Testing real packet traffic

Dynamic network testing is becoming increasingly important since it has been shown that real programs tend to send
burst of packets in time and space. Uniform traffic simulations can tell little about network behaviour under these circum-
stances. In fact, some analytical models have already been proposed to deal with such a burst [10,31] and hot-spot traffic [32].

SimuRed can read a file with the list of packets to be delivered. This file is in fact a trace file that could have been gen-
erated from a real application. The format of the trace file is text: each line represents a new packet defined by up to five
fields. These fields specify the clock cycle at which the packet is delivered or the dependent packet identification, the packet
source and destination node, the packet length and the unique packet identification. The dependent packet and the unique
packet identifications are good to specify that a packet must be sent only when the dependent packet arrives to its
destination.

Any complex traffic pattern can be generated using a program to write a trace file, though the most interesting option is to
simulate real traffic like that generated by a parallel program. In this case, the ability to define dependent packets is funda-
mental, since many inter-process communications are serialized due to the pure underlying algorithmic nature of programs.
Dependent packets are also necessary to carry out simulations of the ping–pong type, which are important to some network
performance indicators.
5. Simulator performance

One of the most criticised aspects of event-driven simulators is the time required to complete a run. The flit-level sim-
ulator consumption time is usually longer than the time required by an analytical model to obtain results. Nevertheless,
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the flit-level simulator offers accurate results and can perform more sophisticated simulations. The simulation execution
time of SimuRed has been measured. This time, even using an average desktop computer, is not very long and is comparable
to the time required by some analytical models.

All the experiments in this section have been performed using a Pentium IV desktop computer running at 2.54 GHz;
which falls within the average of low-performance desktop computer and is below any simple lab workstation. Two-
and three-dimensional meshes have been chosen to carry out the experiments. The routing mechanism has been the
deterministic dimensional order for meshes, with no virtual channels, 2-flit buffer length and 32-flit packet length. The
packet number was 200.000 for all experiments; this number is common for simulations of up to a few hundred nodes.
The injection rate was also the same for all the experiments: 0.3 flits/node/cycle; this rate is large enough to ensure net-
work saturation, which represents one of the worst cases for simulation speed. Simulation time measurements are sum-
marized in Fig. 6.

The most time-consuming experiment was that performed with a 65.536 node two-dimensional network. In this case, the
time required to complete the simulation was 82 min. Most of the experiments shown in literature are for systems with tens
or hundreds of nodes; SimuRed takes from 1 to 10 min to perform a single simulation run for networks with even more than
one thousand nodes using a modest desktop computer. These results contrast with those published in [2] where the authors
compared their analytical model with a flit-level simulator; their analytical model took 13 min to complete while their flit-
level simulator took 1077 min (almost 18 h!). The authors used a state-of-the-art workstation (year 2000–2002). The same
experiment has been repeated with SimuRed running in a desktop computer: 2-D mesh of 63 � 63 nodes, with 32-flit mes-
sages and 8 runs for several network loads up to saturation. SimuRed took 50 min which is 4 times slower than the analytical
model, but 20 times faster than the flit-level simulator these authors used. A total of 60,000 packets were used on each run:
30,000 warm-up packets and 30,000 more for real data analysis. The performance of a desktop computer is probably not far
from a good workstation 4–6 years older, so it is the simulator, more than the platform, the guilty for the performance
improvement. The reason for the higher performance of SimuRed come from the strategy used for driving the process: while
in most flit-level simulators the nodes drive the program execution, in SimuRed the packets drive the program execution. In
SimuRed only those elements containing a packet flit are processed, while in other simulator all elements in the network
execute some code even when they are idle.

Simulation time depends on many factors. In Fig. 6 the time has been plotted against the network node number, since the
network size is the parameter with the greatest impact on simulation time. Both time and node number axes are logarithmic
to show an almost linear dependency between logarithms of time and node number. This linear dependency is especially
noticeable in the 2-D mesh experiment. In this case we have performed several experiments and we have found an empirical
formula that roughly modulates the simulation time in 2-D meshes:
seconds � nodes0:8 ð1Þ
Since the exponent in (1) is lower than 1, the simulation time scales well with the network size. In fact, this time seems to
depend on the packet average path; this is the reason why the time decreases for the 3-D mesh in large networks compared
to the 2-D mesh, as shown in Fig. 6.
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6. Network evaluation using SimuRed

SimuRed can enable many experiments and studies. In this section we analyze the impact of injection channels on sta-
tionary network performance. We also compare deterministic versus adaptive routing and the impact injection channels
have on this comparison. This study was chosen since the impact of injection/ejection channels on performance is something
SimuRed is capable to analyze unlike to other simulators and models. The study has been performed for two common net-
work topologies, namely meshes and hypercubes. These networks have quite different performance behaviour depending on
the routing algorithm type as shown next.

6.1. Mesh network performance

The experiment involves the packet latency measure for different numbers of injection channels using deterministic and
adaptive routing in a 2-D mesh network. The experimental results have been obtained for an 8 � 8 2-D mesh (64 nodes), 32-
flit packets, 2-flit buffers and two virtual channels. There were 4 ejection channels to avoid packet arrival bottleneck. The
deterministic routing algorithm was the dimensional order routing. Duato’s fully-adaptive algorithm for meshes was chosen
for the adaptive experimental set up.

Fig. 7 shows the simulation results for the deterministic routing. The injection channel addition has a negative effect on
deterministic routing since the packet latency increases, although the maximum delivery rate remains almost constant.
Deterministic routing imposes limitations on the degree of freedom of the packet; if there are more injection channels than
packet escape ways, it is very likely that packets will stay in the injection buffer for a long time before entering the network.
This is the reason why adding injection channels usually increases packet latency, in fact, this extra latency is due to the
packet waiting time in the injection buffer. Network maximum throughput remains constant since extra packets are stopped
in injection channels and do not over-saturate the network.

Fig. 8 shows the same simulation but using adaptive routing. For this routing type, packet latency changes little with re-
spect to the number of injection channels, but the maximum delivery rate decreases when using several injection channels.
Network saturation is worse for adaptive routing than for deterministic routing since packet latency increases a lot and the
maximum delivery rate decreases slightly. Adaptive routing allows a higher degree of freedom for packet routing. This free-
dom in routing makes it easier to inject packets in the network, even at higher rates than the network can support. In the
stationary situation the network becomes saturated and the probability of packet blocking increases up to the point where
it becomes difficult to reach the destination node; in this situation packet latency increases dramatically while the maximum
throughput decreases. This saturation state is shown in the charts as spikes and non-linearities around high delivery rates.
The good thing about adaptive routing is that it can handle several concurrent injection buffers without performance deg-
radation; the problem comes when traffic is so high that it over-saturates the network and latency becomes unpredictable.

Fig. 9 shows a comparison between adaptive and deterministic routing for 1 and 4 injection channels in meshes. Perfor-
mance of adaptive and deterministic routing is almost the same when one single injection channel is used. This similar per-
formance of adaptive and deterministic routing in stationary 2-D mesh network analysis is not strange and has already been
reported by other authors [33]. Nevertheless, there is a noticeable change in performance when more than one injection
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channel is used: while adaptive routing performance remains almost unaltered for low and medium traffic, deterministic
packet latency increases as shown in the figure. The cost of adaptive routing in this case is the degradation of network max-
imum throughput and a dramatic increase in packet latency for heavy traffic.

6.2. Hypercube network

The same experiment has been repeated for a 64-node hypercube (n ¼ 6, k ¼ 2). The node number is the same as the
mesh, but the connectivity capabilities and cost of the hypercube are much greater than those of the mesh.

Fig. 10 shows the packet latencies for different number of injection channels and routing algorithms. The first remarkable
result is the different behaviour for the number of injection channels in deterministic and adaptive routings. In fact, this
behaviour is the same reported for the mesh experiment: adaptive packet latency changes little with the number of injection
channels, but when packet traffic becomes very high (above the network bandwidth), the network saturates and the max-
imum delivery rate decreases while packet latency dramatically increases. There is a difference though; packet maximum
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delivery rate changes little with the number of injection channels; only when this number is very high the net over-saturates
and the maximum delivery rate decreases. Deterministic routing performance dependency on injection channel number
demonstrates the same behaviour as that shown for meshes: the higher the number of injection channels, the worse the per-
formance, though maximum delivery rate increases a little.

The other important result shown in Fig. 10 is the noticeable difference in performance between adaptive and determin-
istic routing in hypercube networks. While in the mesh network the difference in performance was not very high, this dif-
ference is especially visible in the hypercube network. Not only is packet latency lower in all cases, but also adaptive routing
shows larger throughput with the exception of a very large number of injection channels. These results comparing packet
latency and maximum throughput in adaptive and deterministic routing are in accordance with results of similar experi-
ments [34].

7. Conclusions

A multicomputer network simulator has been described, whose visual/interactive user interface makes it especially sui-
ted for new routing algorithm debugging, and among other purposes also in education. The simulator is simple to use and its
Java or C++ implementations are easy to change allowing researchers to tailor the simulator core to fit their custom systems.
SimuRed can perform static and transient network simulations and it has the ability to cope with real-traffic traces. The sim-
ulation is driven by the packet flits instead of the network physical components; this makes simulations run faster than in
other approaches. In fact, SimuRed performance allows simulation of hundreds of nodes in the order of minutes, making it
comparable, though always slower, to most of analytical models. SimuRed helps in the design of many interconnection net-
works, not only for modern parallel systems, but also for systems based on new trends as the Network on Chip (NoC)
technology.

Some experiments have been carried out to study the performance impact of injection channels and deterministic/adap-
tive routing in two-dimensional meshes and hypercubes. These experiments have shown a small difference in performance
when comparing adaptive and deterministic routing in a 2-D mesh. Nevertheless, this difference is especially noticeable in
hypercubes, where adaptive routing performs better than deterministic one. These experiments have also shown that the
number of injection channels can play an important role in network performance. In deterministic routing the larger the
number of injection channels, the worse the performance. In adaptive routing, the number of injection channels has a little
impact on performance, except when it is very high and the network over-saturates, increasing the packet latency while
decreasing the maximum delivery rate.
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